Termination w.r.t. Q of the following Term Rewriting System could not be shown:
Q restricted rewrite system:
The TRS R consists of the following rules:
a1(a1(f2(x, y))) -> f2(a1(b1(a1(b1(a1(x))))), a1(b1(a1(b1(a1(y))))))
f2(a1(x), a1(y)) -> a1(f2(x, y))
f2(b1(x), b1(y)) -> b1(f2(x, y))
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
a1(a1(f2(x, y))) -> f2(a1(b1(a1(b1(a1(x))))), a1(b1(a1(b1(a1(y))))))
f2(a1(x), a1(y)) -> a1(f2(x, y))
f2(b1(x), b1(y)) -> b1(f2(x, y))
Q is empty.
Q DP problem:
The TRS P consists of the following rules:
A1(a1(f2(x, y))) -> A1(y)
F2(a1(x), a1(y)) -> F2(x, y)
A1(a1(f2(x, y))) -> A1(b1(a1(y)))
A1(a1(f2(x, y))) -> A1(b1(a1(b1(a1(x)))))
A1(a1(f2(x, y))) -> A1(x)
F2(b1(x), b1(y)) -> F2(x, y)
F2(a1(x), a1(y)) -> A1(f2(x, y))
A1(a1(f2(x, y))) -> A1(b1(a1(b1(a1(y)))))
A1(a1(f2(x, y))) -> F2(a1(b1(a1(b1(a1(x))))), a1(b1(a1(b1(a1(y))))))
A1(a1(f2(x, y))) -> A1(b1(a1(x)))
The TRS R consists of the following rules:
a1(a1(f2(x, y))) -> f2(a1(b1(a1(b1(a1(x))))), a1(b1(a1(b1(a1(y))))))
f2(a1(x), a1(y)) -> a1(f2(x, y))
f2(b1(x), b1(y)) -> b1(f2(x, y))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
A1(a1(f2(x, y))) -> A1(y)
F2(a1(x), a1(y)) -> F2(x, y)
A1(a1(f2(x, y))) -> A1(b1(a1(y)))
A1(a1(f2(x, y))) -> A1(b1(a1(b1(a1(x)))))
A1(a1(f2(x, y))) -> A1(x)
F2(b1(x), b1(y)) -> F2(x, y)
F2(a1(x), a1(y)) -> A1(f2(x, y))
A1(a1(f2(x, y))) -> A1(b1(a1(b1(a1(y)))))
A1(a1(f2(x, y))) -> F2(a1(b1(a1(b1(a1(x))))), a1(b1(a1(b1(a1(y))))))
A1(a1(f2(x, y))) -> A1(b1(a1(x)))
The TRS R consists of the following rules:
a1(a1(f2(x, y))) -> f2(a1(b1(a1(b1(a1(x))))), a1(b1(a1(b1(a1(y))))))
f2(a1(x), a1(y)) -> a1(f2(x, y))
f2(b1(x), b1(y)) -> b1(f2(x, y))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 1 SCC with 4 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPAfsSolverProof
Q DP problem:
The TRS P consists of the following rules:
A1(a1(f2(x, y))) -> A1(y)
F2(a1(x), a1(y)) -> F2(x, y)
A1(a1(f2(x, y))) -> A1(x)
F2(b1(x), b1(y)) -> F2(x, y)
F2(a1(x), a1(y)) -> A1(f2(x, y))
A1(a1(f2(x, y))) -> F2(a1(b1(a1(b1(a1(x))))), a1(b1(a1(b1(a1(y))))))
The TRS R consists of the following rules:
a1(a1(f2(x, y))) -> f2(a1(b1(a1(b1(a1(x))))), a1(b1(a1(b1(a1(y))))))
f2(a1(x), a1(y)) -> a1(f2(x, y))
f2(b1(x), b1(y)) -> b1(f2(x, y))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
A1(a1(f2(x, y))) -> A1(y)
A1(a1(f2(x, y))) -> A1(x)
Used argument filtering: A1(x1) = x1
a1(x1) = x1
f2(x1, x2) = f2(x1, x2)
F2(x1, x2) = F2(x1, x2)
b1(x1) = x1
Used ordering: Quasi Precedence:
[f_2, F_2]
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
F2(a1(x), a1(y)) -> F2(x, y)
F2(b1(x), b1(y)) -> F2(x, y)
F2(a1(x), a1(y)) -> A1(f2(x, y))
A1(a1(f2(x, y))) -> F2(a1(b1(a1(b1(a1(x))))), a1(b1(a1(b1(a1(y))))))
The TRS R consists of the following rules:
a1(a1(f2(x, y))) -> f2(a1(b1(a1(b1(a1(x))))), a1(b1(a1(b1(a1(y))))))
f2(a1(x), a1(y)) -> a1(f2(x, y))
f2(b1(x), b1(y)) -> b1(f2(x, y))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.